Pyrethroids in urban runoff

Donald Weston

University of California, Berkeley

Some basic pyrethroid facts

- They are insecticides produced synthetically, but modelled after pyrethrin, a natural chrysanthemum-derived insecticide
- Recognizable by "...thrin" suffix for most members of the class (e.g., bifenthrin, permethrin, cypermethrin)
- Dominant insecticide used by homeowners and by professional pest control firms. Substantial use in CA agriculture, though organophosphates still dominate.

Annual trends in pyrethroid use in California

The tools: Hyalella toxicity test

One of two species with nationally standardized protocols for freshwater sediment testing.

- Sediment testing Bring sediment in to the lab, add Hyalella, count survivors after 10 days.
- Water testing Bring water sample in to the lab, add Hyalella, count survivors after 4 days.

Our initial urban creek sediment studies

Location	Number of samples	% toxic to Hyalella	% with pyrethroids at concentrations expected to be toxic
Roseville	26	81%	88%
Pittsburg	21	86%	95%

Subsequent studies have confirmed similar findings in many other urban creeks statewide.

Pyrethroid sensitivity of Hyalella <u>azteca</u>

Pyrethroid	H. azteca survival 96-h LC50 (ng/L)	H. azteca impaired movement 96-h EC50 (ng/L)	
Bifenthrin	7.7	3.3	
Cyfluthrin	2.3	1.9	
Cypermethrin	2.3	1.7	

<u>C</u> . <u>dubia</u> survival
48 to 96-h LC50 (ng/L)
50-70
140
194

C. dubia data from Mokry and Hoagland, 1990; Yang et al., 2006.

Roseville storm drain

Urban drain pump station

Summary of our urban runoff studies

Location	Number of samples	% toxic to <u>Hyalella</u>	% with pyrethroids at concentrations expected to be toxic
Stockton	12	83%	67%
Sacramento	10	80%	70%
Roseville	12	no data	100%
Elk Grove	12	no data	92%
Vacaville	2	100%	100%
San Lorenzo	3	100%	100%

Occasions that each pyrethroid exceeded its <u>Hyalella</u> EC50, as percent of total exceedances

Bifenthrin in urban runoff

Further evidence implicating pyrethroids as the principal cause for observed toxicity

Toxicity Identification Evaluations (TIE) using:

- 1. Reduced temperature
- 2. Piperonyl butoxide (PBO)
- 3. Engineered enzymes

TIE approach #1: Reduced temperature

Pyrethroids are atypical in that they become more toxic at lower temperatures

Effect of temperature on Hyalella EC50s

	EC50 (ng/L) at 23 C	EC50 (ng/L) at 17 C
Bifenthrin	3.3	1.6
Cyfluthrin	1.9	0.5
Cypermethrin	1.7	0.9

TIE approach #2: PBO (piperonyl butoxide)

PBO inhibits activity of one of the enzymes that would ordinarily detoxify pyrethroids, making them more toxic.

Effect of PBO on Hyalella EC50s

	EC50 (ng/L) without	EC50 (ng/L) with PBO	
	PBO		
Bifenthrin	3.3	1.0	
Cyfluthrin	1.9	0.6	
Cypermethrin	1.7	0.5	

TIE approach #3: Engineered esterases

Add enzymes engineered to breakdown specific pyrethroids and organophosphate pesticides, and determine which enzyme reduces the toxicity.

Enzymes tested

OPDA: Organophosphate degrading enzyme, effective against chlorpyrifos, diazinon, and some other OPs.

E3-013: Esterase designed for degradation of the pyrethroid bifenthrin.

E3-018/022/025: A mix of esterases, each designed to be effective against different isomers of the pyrethroid cypermethrin.

BSA Control: No enzymatic activity. Control for DOM.

E3-013 enzyme with bifenthrin

E3-018/022/025 enzymes with cyfluthrin

Urban runoff TIEs

(values are EC50s and 95% conf. interval, as % effluent)
Green highlight indicates results consistent with pyrethroid

	Regular test	Low Temp.	PBO	BSA	E3 Enzymes
LP (Stockton) (Feb.)	70.8 (58.1-83.7)	36.5 (26.6-46.7)	15.8 (12.5-19.3)		
ML (Stockton) (Feb.)	26.0 (20.0-31.7)	12.4 (8.4-17.1)	3.2 (2.0-4.3)		
Vacaville (Feb.)	21.1 (17.2-25.2)	14.6 (12.5-17.0)	11.8 (9.3-14.3)		62.2 (45.2-91.9)
#104 (Sacramento) (Feb.)	57.9 (51.7-65.0)	28.0 (21.1-37.4)	25.8 (20.0-31.7)		>100
#28 (Sacramento) (May)	23.0 (18.0-28.2)	13.3 (10.6-16.2)	5.7 (4.7-6.7)	29.4 (24.2-35.8)	36.5 (30.1-43.5)
WR (Stockton) (Sept.)	21.9 (16.4-27.1)		8.5 (6.1-10.4)	33.1 (27.0-38.9)	80.2 (67.4-92.7)

So where are the pyrethroids coming from?

Soil in freshly treated Roseville yard (7500 ng/g cyfluthrin)

Sediment suspended in runoff from Roseville drain (240-470 ng/g cyfluthrin)

Sediment in Roseville urban creeks (3-180 ng/g cyfluthrin)

Hyalella LC50 (11 ng/g cyfluthrin)

